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- ABSTRACT

The main purpose of this work is to give explicit sparsity-
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preserving SOR (successive overrelaxation) algorithms for the solution
of separable quadratic and linear programming problems. The principal g
and computationally distinguishing feature of the present SOR algorithms ;

is that they preserve the sparsity structure of the probiem and do not

require the computation of the product of the constraint matrix by its

transpose as is the case in ear]iér SOR algorithms for linear and
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SIGNIFICANCE AND EXPLANATION

Many important optimization problems have linear constraints and
objective functions wh{ch are quadratic or linear. Very often these
problems are very large but sparse. Conventional methods such as the
simplex method and other pivotal methods may not be able to handle

such problems because of their size and because the sparsity structure
of the problem may be quickly lost when these methods are used. HWe
propose here a different class of methods, successive overrelaxation
(SOR) methods, which can handle large problems while preserving their
sparsity. SOR methods have been widely and successfully used in the
solution of linear systems of equations, but rarely in the solution of.

optimization problems.

The responsibility for wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.




SPARSITY-PRESERVING SOR ALGORITHMS
FOR SEPARABLE QUADRATIC AND LINEAR PROGRAMMING

0. L. Mangasarian

1. Introduction

Recently iterative SOR methods have received widespread attention
in the solution of the symmetric and nonsymmetric linear complementarity
problem [4,6,3,11,15,16,1], quadratic and linear programming problems
[12,13]. In the case of the latter two problems which are our principal
concerns here, the recently proposed SOR algorithms do not preserve any
sparsity that the original problems may have had. This is due to the
fact that algorithms as presented in [12] require the product of the
constraint matrix by its transpose, which can cause loss of both sparsity
and accuracy. In this work we shall present some explicit realizations
of the algorithms of [12,13] which will not require the multiplication
of the constraint matrix by its transpose. These computationally
improved realizations which follow from the algorithms of [12] have not
been given explicitly before. The absence of such sparsity-prese}ving
algorithms has been a critical factor in preventing the application of
SOR methods to many large important but highly structured problems such
as economic equilibrium problems, transportation and network flow
problems. In addition some of the present realizations of the SOR
algorithms (e.g. (14) and (32) below) require only simple operations on
the rows of the constraint matrix, and hence very large problems can be
tackled by such SOR realizations, because only linear row arrays are
needed in the computations. These advantages become even more pronounced
if these linear row arrays are sparse and hence can be stored in packed
form.

The paper is organized as follows. In Section 2 we give an SOR

algorithm for the symmetric linear complementarity problem or.equiva1ent1y
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for the quadratic programning problem with nonnegativity constraints only.
This is a special case of the general algorithm presented in [11] but
given here, in a simple explicit form in terms of.the rows of the matrix
defining the problem, principally to make it preserve problem sparsity.
In Section 3 we consider a separable quadratic programming problem and
give a version of the SOR algorithm of [12] which does not require multi-
plication of the constraint matrix by its traﬁspose. Hence this present
form of the algorithm is now ideally suited for large sparse problems. In
Section 4 two sparsity-preserving SOR algorithms for linear programming
are given. One is based on finding the "smallest" optimal primal-dual
solution (LPSOR1) [13] and the other is based on perturbing a linear
program to a separable quadratic program and then solve the latter by the
method of Section 3 (LPSOR2) [12]. Computational experience with a
version of LPSOR1 [9] on problems of size up to 800 constraints and 1000
variables and the non-sparsity-preserving version of LPSOR2 [12] have
been very encouraging. It is hoped that further refinements will make
SOR methods simple, robust and commercially viqb]e methods for solving
very large separable quadratic and linear programs.

We briefly describe now the notation used. A1l matrices and vectors

X .
R™P  and denote row i

are real. For the mxn matrix A we write Ac
by Ai’ column j by A+j and the element in row i and column j by
Aij' For x in the real n-dimensional Euclidean space R", element 1
is denoted by X4 and x, will denote the vector with components

(x+)i = max {xi,O}, i=1,...,n. A1l vectors are column vectors unless

transposed by the superscript T. ||x|| will dencte the 2-norm,
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n
(xTx)!s =(‘Z]x§)g. A matrix C in R™™ s positive semidefinite if
S

xTCx 20 forall x in R" and positive definite if xTCx > 0 for

all nonzero x in R"; For brevity we shall sometimes omit mentioning
the dimensionality of a vector or matrix, it being obvious from the
context. The vector e will be a vector ones in a Euclidean space of
appropriate dimension. For a twice differentiable function ¢:Rm><R"-*R,

Vu¢(u,v) will denote the mx1 gradient vector with elements

39&94!)-, i=1,...,m, vv¢(u,v) will denote the nx1 gradient vector’

i 3uy |
v ¢(u,v
with elements 39%%411, i=1,...50, V{u,v) = | Y » and V2¢(u,v)

g (n#m)x(n+m)

will denote the Hessian in with submatrix components

denoted as follows

) Vyud(usv) v, o(u,v
: Veo(u,v) =
- Vyudlusv) v 0(u,v)

-

]
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L 2. SOR Algorithm for the Symmetric Linear Complementarity Problem

i We consider here the problem of finding 2z In R" such that

Mz + Iq_>_ 0,220, zT(Mz+q) =0 (1)

where M 1is a symmetric matrix in kak and Qe:Rk. Conditions (1)

are [10] the necessary optimality conditions for the quadratic program-

ming problem

minim'i(ze % TMz + qu subject to z >0 (2)

ZeR

Conditions (1) are sufficient for z to solve (2) whenever M is

positive semidefinite [10].

In [4,6,11] iterative SOR methods have been proposed for colving

(1), but without paying any special attention to possible sparsity that

o the problem may have. We give below an SOR algorithm based on that of

[11] in which any sparsity that exists is left undisturbed. If we

define

e(z):='%zTMz + qu : (3)

then the SOR algorithm for solving (2) can be represented as a gradient

projection algorithm of the following type

41 _ 0 020 -] i+1 IR §
2 (zj w(v°e(z ))jjvzje(ZI """zj-l‘zj"°"‘zk))+ (4)
J=lsiiiank

where w {is the relaxation factor or stepsize that must be in the open

interval (0,2) and i represents the ith iteration. More specifically

we have the following.




LCPSOR Algorithm

Choose zoezkf, we (0,2). Having zi compute ii+] as follows:
41, 37 i, Ko
20 = (U k) MaZe Mgz, (5)
for j>1 =1 K

The following convergence theorem follows directly from [11].

Theorem 1: LCPSOR Convergence

(i) Let M be symmetric. Each accumulation point of (5) solves
(1). If in addition M is positive semidefinite then each
accumulation point of (5) solves (2) as well.

(ii) Let M be symmetric and positive semidefinite and such that
Mz+qg>0 for some zeR" (6)

Then the sequence {zi} of the LCPSOR algorithm (5) is
bounded and has an accumulation point that solves both (1)

and (2).
(iii) Let M be symmetric and positive semidefinite and such that

problem (1) (or equivalently problem (2)) has a nonempty
bounded solution set. Then the sequence {zi} of the LPSOR
algorithm (5) is bounded and has an accumulation point that
solves both (1) and (2).

(iv) Let M be symmetric and positive definite then the sequence

{zi} of the LCPSOR algorithm (5) converges to the unique

solution 2z of (1) and (2).




.( Proof

Parts (i), (i) and (iv) follow from Theorém 2.1, Theorem 2.2 and

M Corollary 2.2 of [11] respectively. To establish (i1i) we note that

from Lemma 2.3(b) of [11] that if the sequence {21} of (5) is

i
k such that ‘

unbouned then there exists a yeR

! o#igOJﬁ=qu§o

This contradicts the boundedness assumption on the solution set of (1)

since if 2z solves (1) then Zz + Ay also solves (1) for all 1> 0 3

-l because z + Ay > 0, M(z+\y) + q > 0 and j

0 < (207)T(M(EHF)+a) = 2’5 < 0. o
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i 3. SOR Algorithm for Separable Quadratic Programming

We consider here the separable quadratic program

minimize %XTDX' + ch subject to Ax > b, x>0 (7)

xeRMN
where D 1is a positive diagonal matrix in R"x", Ae Rmx", ceR" and
beR™. For more general quadratic programs see [12]. Associated with

L 3 this quadratic program is the dual quadratic program [5,17,10]

maximize -1yTox+b'u subject to Dx-Alu-v+c=0, (u,v) >0 (8)

L (x,u,v)eRnfmen 2

which upon elimination of x by using the constraint relation

X = D'](ATu+v-c) (9)
. gives
| minimize 17(A1’u+v~c)TD'](ATuﬂ-v-c) -bly subject to (u,v)>0 (10)
. (u,v)eR™N

This problem (10) is now precisely of the form (2) and the LCPSOR

a

;“ e
P PY

" algorithm (5) can be applied to it easily. Because our principal
interest here is sparsity preserving we shall spell out the algorithm

for solving (10) explicitly. Define the objective function of (10) as

¢(u,v):='%(ATu+v-c)TD'](ATu+v-c) - blu m)

-
%

then

. -
-

AD'](ATu+v-c)- b
| Vo(u,v) = (12)
y D'](ATu+v-c)

- WO

B¥
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and !
a-TAT  ap”!
v2o(u.v) = (13)
D—IAT D-]
Now the SOR algorithm for solving (10) can be stated as
41, w i+ i RN
u =(u - T v ¢(u ...oo,u' su-DOOOOQU ,v ))
J J 1.1 TPARR 3-155 m +
(yuolutav i)y |
J=1,....4m 5
i+1 i w i+1 41 i+l i B |
Vs =(V.- = 3 V ¢(u .V .....,V- ,V ,.....V ))
3 h| 11 v, 1 J=1""J n’+
A ICR 0 ) P

J=1,....N0

where w 1is a relaxation factor in (0,2). More specifically we have

the following.

QPSOR Algorithm

Choose (uo,vo)e RT+“, we {0,2). Having (ui.vi) compute

(ui+],vi+l) as follows:

M_ i MR L N ORIV N
u; = (u; - —L——(A.D" (A').ou, '+ 7 (A')., u,4+v =c)-b,
J J “AJD-%HZ J ZZ] 278 zgj 22 J))+

for j>1 l 3
J=1,....,m (14) !

L I EPLR L U ),

Note that any sparsity or structural properties that the matrix A
may have are not destroyed in the QPSOR algorithm as would be the case

fn [12], and in fact may be taken advantage of in the present_a1gor1thm.
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Remark 2
The iteration (14) is very well suited for matrices A which have

a pronounced row structure, for example if A 1is sparse and the nonzero

elements of each row can be easily located without search. On the

other hand if the matrix A has a pronounced column structure, then

the following alternate but equivalent iteration to (14) may be

preferrable:
0 DR SR SPPRh 1 A L I ui)A+viT;cT)D-1(AT) 5.)
j j -% 2 ] cooe j_'l, joo-. m oj j +
l1A;0l
j"'].....,m (]4’)
S (vi_w(ui+11'A vie)) =1 )
j j .j j j + Y [ EEEEE)

Theorem 2: QPSOR Convergence

(i) Each accumulation point (u,v) of the sequence {(ui,vi)}
generated by the QPSOR algorithm (14) solves.(IO), and the
corresponding x determined by (9) solves the quadratic
program (7).

(ii) Let the feasible region of the quadratic program (7) satisfy

the Slater constraint qualification
{x|Ax>b, x>0} # P (15)

Then the sequence {(u',v!)} of the QPSOR algorithm (14) is
bounded and has an accumulation point (u,v) and the

corresponding x determined by (9) solves (7).

.
N P e e ™ rperrim




"¢ Proof
(i) Follows from Theorem 1(i) and the duality theory of quadratic
programming [10, Theorem 8.2.5].

(1) Because of (15) there exist a &6 > 0 such that the perturbed

positive definite quadratic program

minimize -;—xTDx +clx  subject to Ax > b + es, x > es

xeRN

has a solution XeR" with corresponding multipliers

(ﬁ,V)e:Rm+" that satisfy the Karush-Kuhn-Tucker conditions

DR +c-Al-V=0Ak>b+es, Xxe5 020,70

i (Ax-b-es) = 0, V1% = 0
Hence
% = 0" V(ATG+v-c) > e6 >0 .

(16)
AD~ 1 (ATd+7-c)-b > 5 > 0

Conditions (16) are eguivalent to condition (6) for problem (10). Hence

by Theorem 1(ij) the sequence {(ui,vi)} of the QPSOR algorithm (14) is
bounded and has an accumulation point (u,v) which solves (10). Hence

the corresponding x determined by (9) solves (7). 0

-

- -
7
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4. SOR Algorithm for Linear Programming

We consider finally the dual linear programs

minimize ‘c'x subject to Ax > b, x>0 (17)
xeRM )
and
maximize bTu subject to ATu <c,u>0 (18)
ueRM

where AeR™ ™, ceR" and beR™M. It is well known [2] that solving
either (17) or (18) is equivalent to solving both (17) and (18) which

in turn is equivalent to solving the linear complementarity problem
T T ..
Ny +p20,y20, y(Nytp) =y p=0 (19)

where

N= s P= » Y= | [eR, k=n+m (20)
A 0 -b u

Note that N 1is skew symmetric, that is N + NT = 0 and hence

yTNy = 0. As proposed in [13] one way of solving the linear program
(17) is to find the closest point to the origin, in the 2-norm, of the
solution set of (19). That is we shall solve the quadratic program

Mim’mize %—l[yll2 subject to Ny +p 20,y 20, pTy <0 (1)
yeR

Note that under the constraints Ny + p 2> 0, y > 0, the constraint

pTy < 0 1is equivalent to pTy'= 0 since 02 pTy = yT(Ny+p) > 0.

The dual to the quadratic problem (21) is [5,17,10]

SR X




r?
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maximize -%—'”y“z-st subject to y-~ Nls-t+ Bp=0, (s,t,B8)>0
(,Y,S,t,B)eR3k+]

Elimination of y by using the constraint relation

CRFRT AT

gives the quadratic program

T

minimize %—”NTS-Bp'*tHZ-l-p s subject to (s,t,8)>0

(s,t,8)eRZKY

Problem (23) and consequently problem (21) can be solved by the SOR
method of Section 3. For that purpose it is convenient to let

#(s,t,8) equal the objective function of (23) that is

¢(s:t38):= J2’”NTS'BP"“tHZ + pTS

and consequently

N(N"s-gp+t) + p

Vo(s,t,8) = NTs -gpt+t

-pT(NTs-Bp+t)

NNT

V2¢(s :t93) = NT

(21)

(22)

(23)

(24)

(25)
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It is obvious from (26) that V2¢(s,t.8) is positive semidefinite.
We can now state an SOR algorithm for solving (23) based on QPSOR.

LPSORY Algorithm
Choose (s ot ,80) R2k+], we(0,2). Having (si.t1,81) compute

(Si+1,ti+].8i+]) as follows:

gitl. ( i_

k Cos s
j —— (N Z (NT). gy 1+ Zj(NT).,Ls}-B’Nt’)+pj))+, L PO

for J>1

I u2

ti+1= (ti-w(NTsi+]-8ip+ti))+ (27)

T(NT i+ i 1+]))+

a1 . (pls 0P -8 ptt

lipll?

Parts (i) and (ii) of the following convergence theorem follow

directly from Theorem 2(i) and Theorem 1(ii) above respectively.

A Theorem 3: LPSOR1 Convergence

(i) Each accumulation point (s,t,8) of tﬁe sequence
{(si,ti,si)} generated by the LPSOR1 algorithm solves the
dual program (23) and the corresponding (ﬁ) determined
by (22) solve the dual linear programs (17)-(18).

(ii) If there exist (s,t,8)e¢ R2k+1 satisfying v¢(s,t,8) > 0,

then the sequence {(si,ti.si)} generated by the LPSOR)

algorithm is bounded and has an accumulation point.
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Note that Theorem 2(ii) does not apply here because

T

Ny +p>0,y>0 imply that py > 0 and hence we cannot satisfy

the Slater constraint qualification that there must exist a y

satisfying Ny + p>0, y >0 and pTy < 0. We further note that

the condition V¢(s,t,8) > 0 is sufficient but not necessary for

the boundedness of the sequence {(si,ti,si)}. Numerical experiments

have revealed no serious problems with unbouﬁdedness of the sequence

{(si,ti,si)} generated by the LPSOR1 algorithm. ' i
We conclude by giving a sparsity-preserving version of the SOR

algorithm for solving a linear program that was proposed in [12].

This method is based on the fact [14] that the linear program (17) is

7R b —r—

solvable if and only if the quadratic program

minimize -g-xTx + ch subject to Ax> b, x> 0 (28)

xeR"
is solvable for all e (0,e) for some € > 0. _Furthermore the unique
solution of (28) is independent of €& for ee (0,e) and is the
closest solution of the linear program (17) to the origin in the 2-norm
[14]. Note that & may be infinite in some special cases. Problem
(28) can be solved then by the QPSOR algorithm of Section 3. From (8)
the dual to the quadratic program (28) is

T oonT

maximize -Ex'x+b'u subject to ex-ATu-v+c=0. (u,v)>0 (29)

(x,u,v)eRMHMN

which upon elimination of x by using the constraint relation

X =<%(ATu+v-c) (30)
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gives -

m1n1m1ze 1 "ATu+v cll2 bTu subject to (u,v) >0

(u,v)eRMN
Note that (31) is the classical exterior penalty function [7]
associated with the dual linear program (18). However the perturba-
tion results of [14] give the stronger result that ¢ in (31) need
not approach zero in order for x defined by (30) to be a solution
of (17). ’In other words if we let (u(e), v(e)) be a solution of
(31) for e (0,e) then x ='%(ATu(e)-+v(e)-c) is independent of
¢ and is the closest solution of the linear program (17) to the
origin in the 2-norm. MNote however (u(e), v(e)) need not be a
solution of the dual linear program (18) for ee¢ (0,e), but each
accumulation point of {(“(ei)’ v(ei))} will be a solution of (18)
if {ei} is a decreasing sequence converging to zero. We can now
solve (31).by a sparsity-preserving algorithm which follows directly

from the QPSOR algorithm of Section 3 by replacing D by el.

LPSOR2 Algorithm
Choose (uo,vo)e RT+", we (0,2) and € > 0. Having (ui,vi)

determine ui+], vi+] as follows: .

1+1
oy IA; 2

A z (AT).,L e z (AT).zulw -c)-eby)),

for J" TR T

+1 = (Vi-M(ATu'H."*Vi-C))*.

(31)

(32)

et v a2t A o
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Note that this LPSOR2 algorithm, unlike the algorithms proposed

in [12], will preserve any sparsity the matrix A may have and there

is no need to compute AT as was done in [12] and thereby destroying

any sparsity that A may have had.

The following convergence theorem follows directly from the con-

* vergence theorem of the QPSOR algorithm, Theorem 2 and the perturbation

results of [14].

Theorem 4:

LPSOR2 Convergence

R 2 7 o SR

(1)

(1)

Let the linear program (17) have a solution. There exists a
real positive number € such that for each € in the
interval (0,e), each accumulation point (u,v) of the
sequence {(ui,vi)} generated by the LPSOR2 algorithm (32)
solves (31) and the corresponding x determined by (30) is
ifndependent of € and is the (unique) solution of the linear
program (17) which is closest to the origin in the 2-norm.

If in addition to the assumptions of part (i) the constraints
of the linear program (17) satisfy the Slater constraint
qualification (15) then the sequence {(ui.vi)} of the
LPSOR2 algorithm (32) is bounded and has an accumulation

point for each ee (0,€).

P e . b 2

[P N e
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